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ABSTRACT 

The regional analysis of landslide susceptibility is vital for 

understanding and monitoring threats in hydrocarbon 

transportation system integrity. This intricate process connects 

various conditioning factors, including geological materials, 

terrain geometry, and human activity. A notable challenge is 

validating robust methods to merge categorical variables 

(geology, geomorphology, land use, and cover) with continuous 

variables from the digital elevation model. Another hurdle is 

obtaining updated land use data, high-resolution digital 

elevation models, and a substantial number of landslide records 

over time. 2009 IDEAM created a susceptibility map for the 

Ocensa corridor using 181 events and a 90-meter resolution 

DEM. In this work, a new map is introduced, based on 1104 

events, 30-meter resolution, updated land use data up to 2021, 

and more explanatory variables from the Bayesian-weighted 

evidence model. Validation uses the Area Under the Curve 

(AUC) of the Receiver Operating Characteristic (ROC) curve. A 

satisfactory AUC value of 87.9% was achieved. The results are 

compared to IDEAM (2009) and SGC (2019) findings. 

Keywords: Landslide susceptibility, weights of evidence, 

principal component analysis, pipeline risk. 

NOMENCLATURE 
Nomenclature used in equations: 

𝑆 landslide presence. 

𝑆̅  landslide absence. 

𝐵𝑖  presence of class i of factor B. 

�̅�𝑖  absence of class i of factor B. 

𝐴𝑠 area with landslides. 

𝐴𝑡 total area.   

𝑃{𝑆}  prior probability of landslide in the area. 

𝑃{𝐵𝑖} presence probability for class i of factor B. 

𝑃{𝑆|𝐵𝑖} landslide presence conditional probability for 

presence of class i of factor B. 

𝑃{𝑆̅|𝐵𝑖} landslide absence conditional probability for 

presence of class i of factor B. 

𝑃{𝑆|�̅�𝑖} landslide presence conditional probability for 

absence of class i of factor B. 

𝑃{𝑆̅|�̅�𝑖}  landslide absence conditional probability for 

absence of class i of factor B. 

𝑃{𝑆 ∩ 𝐵𝑖} probability of presence of landslide within class 

i of factor B. 

𝑁𝑝𝑖𝑥{𝑆} number of pixels with presence of landslides. 

𝑁𝑝𝑖𝑥{𝑆̅} number of pixels with absence of landslides. 

𝑁𝑝𝑖𝑥{𝐵𝑖} number of pixels inside the class i of factor B. 

𝑁𝑝𝑖𝑥{�̅�𝑖} number of pixels outside the class i of factor B. 

𝑁𝑝𝑖𝑥{𝑆 ∪ 𝑆̅} total number of pixels. 

𝑁𝑝𝑖𝑥{𝐵𝑖 ∪ �̅�𝑖} total number of pixels. 

𝑁𝑝𝑖𝑥{𝑆 ∩ 𝐵𝑖} number of pixels with presence of landslides 

inside the class i of factor B. 

𝑁𝑝𝑖𝑥1 number of pixels with presence of landslides and 

presence of class i of factor B. 

𝑁𝑝𝑖𝑥2 number of pixels with presence of landslides and 

absence of class i of factor B. 

𝑁𝑝𝑖𝑥3 number of pixels with absence of landslides and 

presence of class i of factor B. 

𝑁𝑝𝑖𝑥4 number of pixels with absence of landslides and 

absence of class i of factor B. 

𝑊𝑖
+,𝑊𝑖

− Positive and negative weights for class i of factor 

B, for landslide presence or absence. 

𝑊𝑓𝑖
 Final evidence weight for class i of factor B 

(class contrast factor). 

𝑊𝑓𝐵
 weighted final weight of evidence for factor B. 

 
1. INTRODUCTION 
 From a conceptual standpoint, landslide susceptibility 

analysis is required to know and monitor the threat on the oil 

pipeline. Enhancing this susceptibility analysis by employing 

higher-resolution information, larger working scales, more 

frequent updates, and an increased volume of data, along with 

the use of universally accepted methods, advanced variable 

treatment strategies, and model performance validation, 

improves the predictive capability of spatial terrain instability 



 
Proceedings of the IPG 2023 

International Pipeline Geotechnical Conference   
IPG2023 

 23-24 November 2023, Bogotá, D.C., COLOMBIA 
 

 
IPG2023-0029 

 

 2 © 2019 by ASME 

potential. This improvement contributes to the development of a 

reliable early warning system for rainfall-triggered landslides. 

 The objective is to compare three landslide susceptibility 

maps along the Ocensa oil pipeline corridor. These maps have 

been generated through the spatial and operational overlay of 

various conditioning factors. One map was produced by the 

Instituto de Hidrología, Meteorología y Estudios Ambientales 

[1]. Another map, with national scope and tailored for this study, 

was developed by the Servicio Geológico Colombiano [2, 3]. 

The third map corresponds to the authors' creation under the 

technical-scientific cooperation agreement between Ocensa and 

the Universidad Nacional de Colombia - Manizales [4]. 

 The IDEAM susceptibility map [1] was developed using the 

weights of evidence method [3, 5, 6, 7, 8], based on a 1:500,000 

scale base cartography [9], and the MDE SRTM NASA digital 

elevation model (DEM) with a pixel size of 90 m. It classifies 

susceptibility into high, medium, and low degrees. 

 Conversely, the SGC susceptibility map [1] considers the 

following conditioning factors: geomorphological and surface 

geological units, land use and land cover, slope derived from the 

DEM, and an inventory of landslides or morphodynamical 

processes. The map was created using the bivariate statistical 

method known as the weights of evidence (WoE), which 

employs Bayes' theorem to determine the conditional and 

unconditional probabilities of landslide occurrence [3]. This 

method determines the weights of each conditioning factor based 

on the frequencies of instability processes' occurrence or 

absence, using the pixel as the spatial unit. For validation of the 

calculated SGC landslide susceptibility map, the hypothesis of 

failure was tested using an acceptable data fitting threshold of 

70%, employing the area under the success curve metric. 

 Subsequently, the process and results of the quantitative 

landslide susceptibility analysis developed as part of the 

technical-scientific cooperation agreement between Ocensa and 

Unal FIA (2023) for a 50 km-wide corridor, are reported. 

 
2. MATERIALS AND METHODS 

 

2.1 Weights of Evidence 
The Weights of Evidence (WoE) method, a conditional 

probability approach [10] and rooted in Bayes' theorem, finds 

application in landslide susceptibility analysis. It enables the 

computation of contrast factors or relative weights for the classes 

of various conditioning factors concerning the absence or 

presence of instability events. This weight relies on both prior 

probability and the conditional probability of landslide 

occurrence. 

The prior probability signifies the unconditional probability 

or density of landslides across the entire analysis area for a 

specified recording period. This period is determined by the 

available data in the landslide inventory. It is exclusively 

calculated based on areas with instability in the inventory, 

independent of their causality relationships. In other words, it is 

not contingent on the factor being analyzed or its classes. 

The prior probability represents the likelihood of a randomly 

selected pixel within the analyzed area experiencing a landslide. 

Accordingly, the calculation of the prior probability involves 

dividing the area with landslides by the total analysis area [10]. 

This is equivalent to dividing the number of pixels associated 

with instability by the total number of pixels in the area, as per 

equation (1): 

 

𝑃𝑝𝑟𝑖𝑜𝑟 = 𝑃{𝑆} =
𝐴𝑠

𝐴𝑡
=

𝑁𝑝𝑖𝑥{𝑆}

𝑁𝑝𝑖𝑥{𝑆∪�̅�}
            (1) 

 
The conditioning factors, also known as causal factors 

(independent variables), are divided into classes. The conditional 

probability of landslide occurrence must be computed for one of 

the classes of each factor (for instance, a certain 

geomorphological unit, a slope class, a given land cover). 

Considering the relationship between a class i (with i = 1, 2, …, 

m), associated with a causal factor B, hereinafter denoted as Bi, 

and the landslide map (S), the conditional probability of 

landslide occurrence due to the presence of the class can be 

calculated using equation (2): 

 

𝑃{𝑆 𝐵𝑖⁄ } =
𝑃{𝑆∩𝐵𝑖}

𝑃{𝐵𝑖}
=

𝑁𝑝𝑖𝑥{𝑆∩𝐵𝑖}

𝑁𝑝𝑖𝑥{𝐵𝑖}
             (2) 

 

In other words, the conditional probability of landslide 

occurrence at a randomly selected pixel within a class i of factor 

B is the density of landslides within that class. It is calculated as 

the number of pixels with landslides in the class, divided by the 

total number of pixels within it. The Weights of Evidence 

method enables an indirect assessment of landslide susceptibility 

[5]. To achieve this, it necessitates assigning positive and 

negative weights (Wi+ and Wi-) to each unit of the map, with 

which the final weight of the class (referred to as the contrast 

factor, Wf) is computed concerning landslide occurrence or 

absence. Using the final weights of all classes, the pixels in the 

raster corresponding to each of the conditioning factors B are 

reclassified. 

Consequently, based on Bayes' theorem, equation (3) can be 

formulated as the natural logarithm of the conditional probability 

ratio for landslide presence or absence, due to the presence of 

class i of factor B. Similarly, equation (4) represents the natural 

logarithm of the conditional probability ratio for landslide 

presence or absence, due to the absence of class i of factor B [5]: 
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𝑊𝑖
+ = 𝑙𝑜𝑔𝑒 (

𝑃{𝑆|𝐵𝑖}

𝑃{�̅�|𝐵𝑖}
)              (3) 

 

𝑊𝑖
− = 𝑙𝑜𝑔𝑒 (

𝑃{𝑆|�̅�𝑖}

𝑃{�̅�|�̅�𝑖}
)               (4) 

 

The calculation of the final weight of evidence or contrast 

factor, Wfi, for class i of factor B, is defined as the difference 

between the logarithms of the probability ratios computed in 

equations (3) and (4). The former explains landslide presence or 

absence due to the presence of class i of factor B. The latter 

explains landslide presence or absence due to the absence of 

class i of factor B. The final weight of evidence is obtained using 

equation (5): 

 

𝑊𝑓𝑖
= 𝑊𝑖

+ − 𝑊𝑖
−               (5) 

 
That is to say, positive weights (𝑊𝑖

+) and negative weights 

(𝑊𝑖
−) are assigned to the various classes into which each 

conditioning factor has been divided. The final evidence weight 

for class i of factor B (contrast factor Wfi is derived by 

subtracting the positive evidence weight from the negative 

evidence weight. These contrast factors signify the statistical 

association or causal relationship between the classes of each 

conditioning factor and the occurrence of landslides [11]. 

Van Westen formulates the problem of evidence weight 

computation in terms of pixels [5]. Hereinafter, Npix denotes the 

number of pixels. The universe of potential combinations 

between each landslide and each class i of conditioning factor B 

is represented in the matrix of Table 1. 

 

TABLE 1: Matrix of potential combinations between each landslide 

and each class i of a conditioning factor B (modified from [2, 5, 8]). 

 

Alternatively, considering: A, the study area or universal 

set; Bi, the set of areas occupied by class i of the conditioning 

factor B; S, the set of areas with landslides, then Figure 1. 

Representation of the relationship between the occurrence or 

absence of landslides and the presence or absence of class i of 

factor B (adapted from [2, 5, 7]), depicts the relationship between 

the occurrence or absence of landslides and the presence or 

absence of class i of factor B within the study area A. 

 

 
FIGURE 1: Representation of the relationship between the occurrence 

or absence of landslides and the presence or absence of class i of factor 

B (modified from [2, 5, 8]). 

 

From Table 1 and Figure 1, illustrating the relationship 

between the occurrence or absence of landslides and the presence 

or absence of class i of factor B (adapted from [2, 5, 8]), it is 

feasible to derive the conclusions provided by equations (6) to 

(14): 

 

𝑁𝑝𝑖𝑥1 = 𝑁𝑝𝑖𝑥{𝑆 ∩ 𝐵𝑖}              (6) 

𝑁𝑝𝑖𝑥2 = 𝑁𝑝𝑖𝑥{𝑆 ∩ �̅�𝑖}              (7) 

𝑁𝑝𝑖𝑥3 = 𝑁𝑝𝑖𝑥{𝑆̅ ∩ 𝐵𝑖}              (8) 

𝑁𝑝𝑖𝑥4 = 𝑁𝑝𝑖𝑥{𝑆̅ ∩ �̅�𝑖}              (9) 

𝑁𝑝𝑖𝑥{𝑆} = 𝑁𝑝𝑖𝑥1 + 𝑁𝑝𝑖𝑥2            (10) 

𝑁𝑝𝑖𝑥{𝑆̅} = 𝑁𝑝𝑖𝑥3 + 𝑁𝑝𝑖𝑥4            (11) 

𝑁𝑝𝑖𝑥{𝐵𝑖} = 𝑁𝑝𝑖𝑥1 + 𝑁𝑝𝑖𝑥3            (12) 

𝑁𝑝𝑖𝑥{�̅�𝑖} = 𝑁𝑝𝑖𝑥2 + 𝑁𝑝𝑖𝑥4            (13) 

𝑁𝑝𝑖𝑥{𝐵𝑖 ∪ �̅�𝑖} = 𝑁𝑝𝑖𝑥{𝑆 ∪ 𝑆̅} = 𝑁𝑝𝑖𝑥1 + 𝑁𝑝𝑖𝑥2 + 𝑁𝑝𝑖𝑥3 + 𝑁𝑝𝑖𝑥4      (14) 

 

According to van Westen [5], equations (3) and (4) are 

equivalent to equations (15) and (16), but in terms of pixels: 

 

𝑊𝑖
+ = 𝑙𝑜𝑔𝑒 [

𝑁𝑝𝑖𝑥1

𝑁𝑝𝑖𝑥1+𝑁𝑝𝑖𝑥2

𝑁𝑝𝑖𝑥3

𝑁𝑝𝑖𝑥3+𝑁𝑝𝑖𝑥4

]           (15) 

 

𝑊𝑖
− = 𝑙𝑜𝑔𝑒 [

𝑁𝑝𝑖𝑥2

𝑁𝑝𝑖𝑥1+𝑁𝑝𝑖𝑥2

𝑁𝑝𝑖𝑥4

𝑁𝑝𝑖𝑥3+𝑁𝑝𝑖𝑥4

]           (16) 
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The final evidence weight for class i of factor B is obtained 

through the expression (5), which for clarity is reiterated below 

as equation (17): 

 

𝑊𝑓𝑖
= 𝑊𝑖

+ − 𝑊𝑖
−           (17) 

 

The factor (𝑊𝑖
+) indicates the importance of class i of factor 

B in explaining the presence or absence of landslides. The factor 

(𝑊𝑖
−) indicate the importance of the absence of class i of factor 

B in explaining the presence or absence of landslides. 

Hence, the positive and negative evidence weights 

corresponding to class i of factor B must be interpreted according 

to the following rules [7, 8]: 

If (𝑊𝑖
+ > 0), the presence of class i of factor B contributes 

to the occurrence of landslides. Its magnitude indicates the 

degree of direct correlation or contribution [5]. 

If (𝑊𝑖
+ < 0), the presence of class i of factor B contributes 

to the absence of landslides. Its magnitude indicates the degree 

of inverse correlation [5]. 

If (𝑊𝑖
+ ≅ 0), the presence of class i of factor B shows no 

relation to landslides. In other words, the factor is not 

conditioning [5]. 

If (𝑊𝑖
− > 0), the absence of class i of factor B contributes to 

the occurrence of landslides. 

If (𝑊𝑖
− < 0), the absence of class i of factor B contributes to 

the absence of landslides. 

If (𝑊𝑖
− ≅ 0), the absence of class i of factor B shows no 

relation to landslides. 

 

In conclusion, “the final class weight Wfi will be zero (or 

very close to zero) when the spatial distribution of mass 

movements is independent of the considered factor, positive 

when a positive association exists (the presence of the factor 

contributes to the occurrence of mass movement), and negative 

when a negative association exists (the absence of the factor 

contributes to the occurrence of mass movement).” [12]. 

In other words, the final contrast factor or evidence weight 

obtained from equation (17) constitutes a measure of the 

correlation between class i of conditioning factor B and mass 

movements S. If the final evidence weight exhibits extreme 

values (positive or negative), this indicates that the studied class 

is useful for landslide susceptibility analysis and mapping. 

However, if the contrast factor value centers around zero, it 

suggests that the class has no relationship with the occurrence of 

landslides. 

Finally, this study proposes obtaining the weighted factor 

weight for each conditioning factor based on the individual final 

weights of its component classes, proportional to the area they 

occupy in the study area, using equation (18). 

 

𝑊𝑓𝐵
=

∑ 𝑁𝑝𝑖𝑥{𝐵𝑖}×𝑊𝑓𝑖
𝑚
𝑖=1

∑ 𝑁𝑝𝑖𝑥{𝐵𝑖}𝑚
𝑖=1

          (17) 

 

Similarly, following van Westen [5], it is possible to 

interpret, for the weighted final evidence weight of the factor, 

that "Weights with extreme values indicate that the factor is 

useful for susceptibility mapping, whereas factors with a weight 

around zero have no relation to the occurrence of landslides." In 

this latter case, factor B could be excluded from the susceptibility 

map calculation model. 

 

2.2 ROC Curve in Landslide Susceptibility Analysis 
For model validation, a true positive is referred to when 

the forecast for an analysis unit (or pixel) indicates terrain 

instability and indeed corresponds to an unstable area in the 

landslide inventory. Conversely, a true negative exists when the 

forecast for an analysis unit (or pixel) indicates terrain stability, 

and indeed no landslides have occurred in the analyzed area, 

according to the landslide inventory. 

Quantitative models for landslide susceptibility provide 

continuous values of dependent variables. In this case, results 

can be classified in a binary form: occurrence (1) or absence (0) 

of landslides. The classification of spatial probability of 

instability or susceptibility depends on the distributions of data 

with and without landslides, as well as the selected threshold 

value to predict positive and negative cases of phenomenon 

occurrence. 

Table 2 presents the universe of possible cases that may 

arise when evaluating a landslide occurrence prediction model in 

a matrix form. This table allows contrasting the evidence of 

occurrence or non-occurrence of real events against the forecast 

of the presence or absence of instability processes. The match 

between reality and the occurrence prediction of events is known 

as the model's Sensitivity, which represents the classification as 

true positive cases. On the other hand, the match between reality 

and the prediction of NO occurrence of events is referred to as 

the Specificity of the model (true negatives). The classification 

of each case into one of the four categories shown depends, as 

mentioned earlier, on the chosen discrimination or decision 

threshold. 
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TABLE 2: Confusion matrix for landslides. 

 

 

2.3 Study Area and Analysis Area 
The study area was defined as the corridor contained 

within a 50 km strip (25 km buffer) along the pipeline (see Figure 

2). However, the analysis was conducted for a larger area to 

avoid model boundary issues and utilize a greater amount of 

information from the available landslide inventory within the 

pipeline's influence zone. It encompasses 42 IGAC sheets at a 

1:100,000 scale.  
 

FIGURE 2: Study area for landslide susceptibility analysis along the 

Ocensa pipeline... 
 

Thus, each raster analysis matrix corresponding to each input or 

output variable consists of 290,705,464 pixels (14,536 columns 

x 19,999 rows) across the entire map extent (261,635 km2 block). 

However, within the mosaic boundary of the 42 sheets, there are 

203,437,265 pixels with no value and 87,268,199 pixels with 

data within the analysis area. Considering the coastline trim, the 

information covers a total analysis area of 78,541 km2. In the 

end, a trimming of the landslide susceptibility map is performed 

for the study area. Thus, the analysis area contains 42,882,733 

pixels with information, for a total study area of 38,595 km2. 

 

 

2.4 Landslide Inventory Map 
A landslide inventory map polygons from various 

sources is employed, namely the National Mass Movement 

Inventory - INMM (2021 with 6826 data points), supplemented 

with data from the Mass Movement Information System – 

SIMMA [15], both from SGC, totaling 7200 records for the 

entire country, of which 1929 are within the analysis area. These 

were further supplemented with 91 records provided by Ocensa. 

Out of these landslides, 1104 are located within the study area 

(see Figure 3). 

FIGURE 3: Landslide inventory within the analysis area of the 

Ocensa pipeline. 

 

 

2.5 Factors Conditioning Landslides 
Following recent recommendations [2, 7, 8], input 

variables of the following types are considered: continuous, 

categorical, boolean or binary. Continuous variables are derived 

from the digital elevation model. These include slopes, 

curvatures, roughness, and humidity indices, as well as flow 

accumulation and length. Categorical variables encompass 

superficial geological units, geomorphological units, and land 

use and land cover units. Additionally, boolean variables consist 

of the mass movement polygons. Table 3 specifies the coding of 

variables used in the weights of evidence analysis.  
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TABLE 3: Nomenclature of susceptibility analysis variables. 

 

 

2.6 Methodology 
The methodology for landslide susceptibility analysis 

consists of four phases: 1. Acquisition of input variables; 2. 

Preprocessing of variables; 3. Weights of evidence analysis; 4. 

Calculation and validation of susceptibility map. Figure 4 depicts 

a diagram of the methodological process for conducting 

quantitative landslide susceptibility analysis based on the 

weights of the evidence method. 

FIGURE 4: Methodology for the calculation and validation of 

landslide susceptibility scenario, LSI1. 

 

This analysis strategy is referred to as the LSI1 

scenario. It involves performing conventional weights of 

evidence (WoE) analysis while preceding it with the 

preprocessing of continuous variables derived from the digital 

elevation model (DEM) as well as categorical variables. The 

preprocessing of continuous variables involves transforming the 

eight continuous variables into three (dimensionality reduction) 

using the principal component analysis method, followed by 

classifying the resulting variables into five quintiles. 

Moreover, the preprocessing of categorical variables 

involves converting polygons into raster. Subsequently, the WoE 

method is applied to each of the resulting variables, and the 

susceptibility index is obtained as the sum of contrast factors of 

explanatory variables, pixel by pixel (as suggested by the 

Colombian Geological Survey [2, 3]). Validation is carried out 

using the area under the curve (AUC) of the ROC curve. 

 

 

3. RESULTS AND DISCUSSION 
 

3.1 Calculation of Susceptibility Map 
The methodology described in Figure 12 was employed to 

calculate the landslide susceptibility map at a 1:100,000 scale, 

corresponding to the LSI1 scenario, for the available information 

within the analysis area. 

FIGURE 12: Left: Analysis area (gray color); center: Landslide 

susceptibility map, LSI1; right: Cropped susceptibility map for the study 

area of the Ocensa pipeline. 

 

Subsequently, the map was cropped for the study area, 

which corresponds to a 50 km corridor (25 km buffer) along the 

836 km length. The final map is presented in Figure 12, both for 

the analysis area and the study area. 

 

3.2 Validation of Susceptibility Map 
For the validation of the landslide susceptibility model, the 

area under the curve (AUC) metric of the ROC curve was used. 

A high AUC value (greater than 80% according to Goyes [8], or 

greater than 70% according to SGC [2, 3]) determines the 

validity of the hypothesis regarding the existence of a causal 

relationship between the analyzed conditioning factors and the 

occurrence of a specific type of landslide (in this case, the slides). 

Figure 13 shows the ROC curve for the LSI1 scenario. It was 

Code Nomenclature Variable Name Data Type Variable Type

X 1 FLA Flow Accumulation raster continuous

X 2 FLL Flow Length raster continuous

X 3 GNC General Curvature raster continuous

X 4 PLC Planar Curvature raster continuous

X 5 PRC Profile Curvature raster continuous

X 6 SLP
Slope

raster continuous

X 7 TRI Terrain Roughness Index raster continuous

X 8 TWI Topographic Wetness Index raster continuous

V 1 UGS Shallow Geological Unit polygon categorical

V 2 GMF Geomorphological Unit polygon categorical

V 3 CBT Land use and cover polygon categorical

P MMA Landslide Inventory polygon boolean

Y SampPoint Training and Validation Points point binary
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constructed by testing different thresholds on the distributions of 

data with the presence and absence of landslides, and for each 

threshold, obtaining a coordinate point (false positives, true 

positives). 

FIGURE 13: ROC Curve of the landslide susceptibility map using 

weights of evidence, LSI1 scenario. 

 

The ROC curve was constructed using the algorithm by 

Professor Vakhshoori from Shiraz University (Iran) [13]. As 

seen in Figure 13, the area under the curve was 87.9%, 

confirming the reliability of the resulting map. 

 

3.3 Analysis of Landslide Susceptibility Map Results 
The map was classified into five categories. Table 4 presents 

the information derived from the susceptibility map. The 

category percentages for the analysis area were very low (3.0%), 

low (14.6%), medium (25.6%), high (52.1%), and very high 

(4.7%). For the study area, these percentages are not 

significantly different. 

TABLE 4: Susceptibility category for analysis and study areas. 

 

 

3.4 Results of Model Comparison 
The landslide susceptibility map provided in this report 

differs from the IDEAM [1] and SGC [3] maps in the following 

aspects: 

The number of landslide events used for creating the map 

increased from 181 [1] to 1104 events. The number of events in 

the SGC map [3] cannot be determined as it is a subset of the 

result. However, it is expected to be lower since it uses the same 

database but with a smaller time window than the one used in the 

Unal FIA [4] map. These events correspond to 15% of the 

official records available in the country, contained in SIMMA 

[15]. This is a highly reliable database, as around 94% of the 

information was collected directly in the field and verified by the 

landslides group of SGC (National Landslide Inventory of SGC, 

updated as of March 5, 2020). The observation window was also 

extended from 30 years of records (1979 - 2009) to 111 years 

(1909 - 2020). 

Furthermore, the scale of the new map is 1:100,000, which 

is 5 times larger than the previous maps. Additionally, the spatial 

resolution of the digital elevation model (SRTM - NASA) was 

improved from 90 m to 30 m (30x30 m pixel), providing 9 times 

more definition for map areas and consequently for 

morphometric variables derived from DEM. The new map also 

enhances the scale of the base cartography by IGAC, going from 

1:500,000 to 1:100,000. 

In the IDEAM report [1], the methodology used for 

constructing the landslide susceptibility map and the validation 

results were not evident. The 2009 map likely lacks validation, 

given that the application of validation methods for susceptibility 

analysis has gained prominence over the last decade. The 

validation of the SGC [3] map and the new map was performed 

using the area under the curve (AUC) metric of the Receiver 

Operating Characteristic (ROC) curve. This curve represents the 

model's performance in terms of accuracy rates (true positives) 

and errors (false positives) in predicting landslide occurrences. 

The conditioning factors considered by IDEAM [1] could 

not be determined either, representing another aspect that 

generates uncertainty. At the very least, it is known that 

geological units and the digital elevation model were used. 

It should be noted that for the new map, rigorous preliminary 

work was done to integrate the 42 sheets of the cartographic 

mosaic containing the studied corridor for each categorical 

variable (geological surface units, geomorphological units, and 

land cover), addressing existing issues in the base information. 

In the previous IDEAM map, 3 classes were used for 

categorizing landslide susceptibility: High, Medium, and Low. 

The SGC [3] and Unal FIA [4] maps use 5 categories: Very High, 

High, Medium, Low, and Very Low, which enhances spatial 

differentiation of susceptibility. 
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In summary, the new landslide susceptibility map was 

calculated using more and better information, recent and more 

widely accepted methodologies within the academic and 

scientific community of the country, and it undergoes validation 

or performance evaluation of the susceptibility model calculated 

using the weights of evidence method. 

Table 5 presents a comparison of the most relevant 

parameters among the three available susceptibility maps for the 

Ocensa pipeline corridor, according to IDEAM [1], SGC [3], and 

Unal FIA [4]. 

TABLE 5: Comparison of susceptibility models between IDEAM [1], 

SGC [3], and Ocensa Unal FIA [4]. 

 

In Figure 14, it is evident that the Ocensa - Unal FIA [4] 

map more finely discriminates susceptibility differences 

between neighboring analysis units. 

 

FIGURE 14: Comparison between landslide susceptibility maps of 

IDEAM [1], SGC [3], and Ocensa-Unal FIA [4]. 

 

 

 

4. CONCLUSION 
Landslide susceptibility, reflecting the likelihood of slope 

instability, primarily depends on intrinsic terrain factors related 

to morphological characteristics and soil/rock resistance. 

However, it is also influenced by external factors like land 

use/cover changes and variations in natural moisture conditions. 

Susceptibility maps provide snapshots of geological processes 

tied to slope erosion and instability, which are intrinsically 

dynamic phenomena. 

Periodic updating of these maps captures changes in 

conditioning factors such as land use/cover and the occurrence 

of new erosion and landslide processes, altering the spatial 

probability of terrain instability. Sensitivity, reflected by the true 

positive rate (on the ordinate axis), defines the model's 

sensitivity, while the false positive rate defines the complement 

of specificity (1 - true negative rate). For the susceptibility map 

obtained via the weights of evidence method, an AUC (Area 

Under the Curve) value of 0.879 was achieved, indicating a 

highly satisfactory result. 

The present study's generated map demonstrates reduced 

uncertainty and relative variation in landslide susceptibility. This 

improvement is attributed to a larger scale (5 times), higher 

spatial resolution (9 times), utilization of finer pixel size, an 

extended time window, increased dataset size, and inclusion of 

more explanatory variables. Notably, the proposed map excels 

by achieving highly satisfactory validation metrics compared to 

the SGC map [3] and acceptable literature-based standards. This 

achievement is noteworthy given that the IDEAM map [1] lacks 

reported validation results. 
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